
Security Assessment

Degree Crypto - dct-
staking & dct
CertiK Assessed on Apr 18th, 2023

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

0 Major
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

6 Minor 2 Resolved, 4 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

2 Informational 2 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY DEGREE CRYPTO - DCT-STAKING & DCT

CertiK Assessed on Apr 18th, 2023

Degree Crypto - dct-staking & dct

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

ERC-20, Staking

ECOSYSTEM

Tron

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 04/18/2023

KEY COMPONENTS

N/A

CODEBASE
https://tronscan.org/#/token20/TRwptGFfX3fuffAMbWDDLJZAZFmP6b

GfqL

https://tronscan.org/#/contract/TLpE6gFfYff5nSTRUZGEwA6KYeRVDK

...View All

COMMITS
923ae35fd9f1046dab17e4ee4c0677a7868dbe5e

...View All

8
Total Findings

4
Resolved

0
Mitigated

0
Partially Resolved

4
Acknowledged

0
Declined

https://tronscan.org/#/token20/TRwptGFfX3fuffAMbWDDLJZAZFmP6bGfqL
https://tronscan.org/#/contract/TLpE6gFfYff5nSTRUZGEwA6KYeRVDKe86s
https://github.com/supportdct/smartcontract/tree/923ae35fd9f1046dab17e4ee4c0677a7868dbe5e

TABLE OF CONTENTS DEGREE CRYPTO - DCT-STAKING & DCT

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Description

Recommendations
Short Term:

Long Term:

Permanent:

Findings

TLE-01 : Potentially Mint Reward Token Failure

TLF-01 : Divide Before Multiply

TLF-02 : Lack Of Validation Of `xstatus`

TLF-03 : Potentially Lose Reward Token

TLF-06 : Check Effect Interaction Pattern Violated

TLF-07 : Lack of reasonable boundary

TLF-04 : No Transfer To Staked Token

TLF-05 : Redundant Statements

Optimizations

TLY-01 : Variables That Could Be Declared as Immutable

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS DEGREE CRYPTO - DCT-STAKING & DCT

CODEBASE DEGREE CRYPTO - DCT-STAKING & DCT

Repository

https://tronscan.org/#/token20/TRwptGFfX3fuffAMbWDDLJZAZFmP6bGfqL

https://tronscan.org/#/contract/TLpE6gFfYff5nSTRUZGEwA6KYeRVDKe86s

https://github.com/supportdct/smartcontract/tree/923ae35fd9f1046dab17e4ee4c0677a7868dbe5e

Commit

923ae35fd9f1046dab17e4ee4c0677a7868dbe5e

CODEBASE DEGREE CRYPTO - DCT-STAKING & DCT

https://tronscan.org/#/token20/TRwptGFfX3fuffAMbWDDLJZAZFmP6bGfqL
https://tronscan.org/#/contract/TLpE6gFfYff5nSTRUZGEwA6KYeRVDKe86s
https://github.com/supportdct/smartcontract/tree/923ae35fd9f1046dab17e4ee4c0677a7868dbe5e
https://github.com/supportdct/smartcontract/tree/923ae35fd9f1046dab17e4ee4c0677a7868dbe5e

AUDIT SCOPE DEGREE CRYPTO - DCT-STAKING & DCT

2 files audited 2 files with Acknowledged findings

ID File SHA256 Checksum

TLF
TLpE6gFfYff5nSTRUZGEwA6KYeRVDKe86s/dct-sta

king.sol

77fe23e167377a9e76346fd2e5d42aebec14f2

27fba18ab6a67cfcc1eb291b6b

TLY TLpE6gFfYff5nSTRUZGEwA6KYeRVDKe86s/dct.sol
97904b958d108eb77470280f6e88cb7b4ca03

df0fcdfddfd6c281595392e1534

AUDIT SCOPE DEGREE CRYPTO - DCT-STAKING & DCT

APPROACH & METHODS DEGREE CRYPTO - DCT-STAKING & DCT

This report has been prepared for Degree Crypto to discover issues and vulnerabilities in the source code of the Degree

Crypto - dct-staking & dct project as well as any contract dependencies that were not part of an officially recognized library. A

comprehensive examination has been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS DEGREE CRYPTO - DCT-STAKING & DCT

REVIEW NOTES DEGREE CRYPTO - DCT-STAKING & DCT

Decentralization Efforts

Description

In the contract DegreeCryptoToken the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority.

Function

State Variables

Authenticated Role Function Calls

Function Calls

mint

nowStage

totalSupply

_mint

_owner

In the contract DegreeCryptoToken the role admin has authority over the functions shown in the diagram below. Any

compromise to the admin account may allow the hacker to take advantage of this authority.

Authenticated Role

Function State Variables

Function State Variables
admin

setCloseMinting

setOpenMinting

isOpenMinting

isOpenMinting

REVIEW NOTES DEGREE CRYPTO - DCT-STAKING & DCT

In the contract DegreeCryptoToken the role owner has authority over the functions shown in the diagram below. Any

compromise to the owner account may allow the hacker to take advantage of this authority.

Function

State Variables

Authenticated Role Function Calls

Function Calls

mint

nowStage

totalSupply

_mint

owner

In the contract Ownable the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority.

Authenticated Role

Function

Function Calls
Function

_owner

renounceOwnership

transferOwnership
_transferOwnership

In the contract StakingDCT the role _owner has authority over the functions shown in the diagram below. Any compromise

to the _owner account may allow the hacker to take advantage of this authority.

REVIEW NOTES DEGREE CRYPTO - DCT-STAKING & DCT

Function State Variables

Authenticated Role

Function State Variables

Function State Variables

Function

Function State Variables

Function State Variables

Function

Function State Variables

setFirstStakingFee firststakingfee

_owner

setTronRate

importOldStaker

approveStaker

changeContractOwnership

closeImport

updateMinerPrice

burnStaker

tronRate

totalPendingStaked

totalStaked

owner

isOpenImport

totalStaked

In the contract StakingDCT the role owner has authority over the functions shown in the diagram below. Any compromise

to the owner account may allow the hacker to take advantage of this authority.

REVIEW NOTES DEGREE CRYPTO - DCT-STAKING & DCT

Function State Variables

Authenticated Role

Function

Function

Function State Variables

Function State Variables

Function State Variables

Function State Variables

Function State Variables

setFirstStakingFee firststakingfee

owner

updateMinerPrice

approveStaker

burnStaker

closeImport

importOldStaker

changeContractOwnership

setTronRate

totalStaked

isOpenImport

totalPendingStaked

totalStaked

owner

tronRate

Recommendations

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We recommend carefully managing

the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

REVIEW NOTES DEGREE CRYPTO - DCT-STAKING & DCT

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multi-signature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level in terms of short-

term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement;

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles;

OR

Remove the risky functionality.

Notes

Removed the approve function of the contract dct-staking in the commit 83e97fff9b43fbf64ff2be960a8cfb96a32185b8.

REVIEW NOTES DEGREE CRYPTO - DCT-STAKING & DCT

https://github.com/supportdct/smartcontract/tree/83e97fff9b43fbf64ff2be960a8cfb96a32185b8

FINDINGS DEGREE CRYPTO - DCT-STAKING & DCT

This report has been prepared to discover issues and vulnerabilities for Degree Crypto - dct-staking & dct. Through this audit,

we have uncovered 8 issues ranging from different severity levels. Utilizing the techniques of Static Analysis & Manual

Review to complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

TLE-01 Potentially Mint Reward Token Failure Logical Issue Minor Acknowledged

TLF-01 Divide Before Multiply
Mathematical

Operations
Minor Resolved

TLF-02 Lack Of Validation Of xstatus Logical Issue Minor Resolved

TLF-03 Potentially Lose Reward Token Logical Issue Minor Acknowledged

TLF-06
Check Effect Interaction Pattern

Violated
Volatile Code Minor Acknowledged

TLF-07 Lack Of Reasonable Boundary Volatile Code Minor Acknowledged

TLF-04 No Transfer To Staked Token Logical Issue Informational Resolved

TLF-05 Redundant Statements Volatile Code Informational Resolved

FINDINGS DEGREE CRYPTO - DCT-STAKING & DCT

8
Total Findings

0
Critical

0
Major

0
Medium

6
Minor

2
Informational

TLE-01 POTENTIALLY MINT REWARD TOKEN FAILURE

Category Severity Location Status

Logical

Issue
Minor

TLpE6gFfYff5nSTRUZGEwA6KYeRVDKe86s/dct-staking.sol: 345~3

51; TLpE6gFfYff5nSTRUZGEwA6KYeRVDKe86s/dct.sol: 679
Acknowledged

Description

The function mint of the contract DegreeCryptoToken to mint reward tokens will potentially fail due to the total supply

exceeding the max supply. Hence, the stakers are possibly unable to claim reward tokens.

679 require((totalSupply() + (value)<=maxSupply), "DCT: LIMIT EXCEEDED");

345 require(token.mint(msg.sender, reward), "Reward transfer failed");

346 // mint for fee

347 require(token.mint(addrfee, amountfee), "Reward fee transfer failed");

348 // mint for tax

349 require(token.mint(addrtax, amounttax), "Reward tax transfer failed");

350 stakerMinted[msg.sender] = stakerMinted[msg.sender] + dailyReward;

351 stakers[msg.sender].lastRewardTime = (stakers[msg.sender].lastRewardTime) +

(rewardInterval);

Recommendation

We recommend leaving a sufficient balance for minting reward tokens.

Alleviation

[Degree Crypto] : Issue acknowledged. We will not make any changes for the current version. The system we created is

designed to collect staking fees when rewards are claimed. When it cannot be claimed, the stakers will not be charged any

fees.

TLE-01 DEGREE CRYPTO - DCT-STAKING & DCT

TLF-01 DIVIDE BEFORE MULTIPLY

Category Severity Location Status

Mathematical

Operations
Minor

TLpE6gFfYff5nSTRUZGEwA6KYeRVDKe86s/dct-staking.sol:

515, 519
Resolved

Description

Performing integer division before multiplication truncates the low bits, losing the precision of the calculation.

515 uint256 elapsedTime = uint256(block.timestamp -

stakers[staker].lastRewardTime) / rewardInterval;

519 uint256 reward = dailyReward * (elapsedTime);

Recommendation

We recommend applying multiplication before division to avoid loss of precision.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the commit

3d365dd62838692938c174babff56f56995f3901.

TLF-01 DEGREE CRYPTO - DCT-STAKING & DCT

https://github.com/supportdct/smartcontract/commit/3d365dd62838692938c174babff56f56995f3901

TLF-02 LACK OF VALIDATION OF xstatus

Category Severity Location Status

Logical Issue Minor TLpE6gFfYff5nSTRUZGEwA6KYeRVDKe86s/dct-staking.sol: 33, 394 Resolved

Description

There is no validation to ensure the xstatus is valid.

Recommendation

We recommend reviewing the logic and adding the validation.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the commit

3d365dd62838692938c174babff56f56995f3901.

TLF-02 DEGREE CRYPTO - DCT-STAKING & DCT

https://github.com/supportdct/smartcontract/commit/3d365dd62838692938c174babff56f56995f3901

TLF-03 POTENTIALLY LOSE REWARD TOKEN

Category Severity Location Status

Logical

Issue
Minor

TLpE6gFfYff5nSTRUZGEwA6KYeRVDKe86s/dct-staking.sol: 144~

147, 354~359, 414
Acknowledged

Description

The calculation of the reward depends on the variable stakers[staker].amountStaked , which stands for the token amount

the user staked. So the users potentially lose the reward token in the scenarios below.

If the contract owner calls the burnStaker function to burn stakers' tokens before they can claim their reward

tokens.

When the claimReward function is called, the user's pending amount will not be converted to the staked amount. If

a user stakes tokens multiple times in different stages over time but never calls the claimReward function to

withdraw rewards, then the user will ultimately lose some reward tokens because the staked amount has not been

updated in a timely manner.

144 function _calcReward(address staker) internal view returns (uint256){

145 uint256 dailyReward = (stakers[staker].amountStaked *

rewardPercentage[nowStage]) / (10000);

146 return dailyReward;

147 }

354 if(pendingStaking[msg.sender] > 0) {

355 stakers[msg.sender].amountStaked = (stakers[msg.sender].amountStaked) +

(pendingStaking[msg.sender]);

356 totalStaked = totalStaked + (pendingStaking[msg.sender]);

357 totalPendingStaked = totalPendingStaked - (pendingStaking[msg.sender]);

358 pendingStaking[msg.sender] = 0;

359 }

Recommendation

We recommend reviewing the logic and ensuring it is as intended. We recommend that users be explicitly reminded in the

white paper to withdraw their rewards in a timely manner.

Alleviation

[Degree Crypto] : Issue acknowledged. We won't make any changes for the current version.

TLF-03 DEGREE CRYPTO - DCT-STAKING & DCT

TLF-06 CHECK EFFECT INTERACTION PATTERN VIOLATED

Category Severity Location Status

Volatile

Code
Minor

TLpE6gFfYff5nSTRUZGEwA6KYeRVDKe86s/dct-staking.sol: 211, 21

5, 219, 221, 225, 227, 232, 234, 236, 237, 238, 260, 270, 273, 278, 2

79, 280, 281, 327, 345, 347, 349, 351, 355, 422, 425, 428, 430, 431,

432

Acknowledged

Description

The order of external call/transfer and storage manipulation must follow the check-effect-interaction pattern.

External call(s)

215 require(token.transferFrom(msg.sender, address(this), amount),

"Transfer failed");

211 addrfirststakingfee.transfer(minerFirstTimeFee[msg.sender]);

State variables written after the call(s)

227 minerCycle[msg.sender] = 0;

219 pendingStaking[msg.sender] = pendingStaking[msg.sender] + amount;

221 stakers[msg.sender].minerBurnedTimestamp = 0;

Note: Only a sample of 3 assignments (out of 9) are shown above.

External call(s)

270 require(token.transfer(msg.sender, amount), "Transfer failed");

260 addrminerfee.transfer(payoutLeft);

State variables written after the call(s)

TLF-06 DEGREE CRYPTO - DCT-STAKING & DCT

278 pendingStaking[msg.sender] = 0;

273 stakers[msg.sender].minerBurnedTimestamp = block.timestamp +

burnedDuration;

279 stakers[msg.sender].status = 2;

Note: Only a sample of 3 assignments (out of 5) are shown above.

External call(s)

345 require(token.mint(msg.sender, reward), "Reward transfer failed");

347 require(token.mint(addrfee, amountfee), "Reward fee transfer failed");

349 require(token.mint(addrtax, amounttax), "Reward tax transfer failed");

327 addrminerfee.transfer(minerClaimPayout);

State variables written after the call(s)

351 stakers[msg.sender].lastRewardTime =

(stakers[msg.sender].lastRewardTime) + (rewardInterval);

355 stakers[msg.sender].amountStaked =

(stakers[msg.sender].amountStaked) + (pendingStaking[msg.sender]);

External call(s)

422 require(token.burn(amount), "Failed staker burned");

425 require(token.transfer(staker, (amount - totallocked)), "Failed

transfer token!");

428 require(token.burn(toburn), "Failed staker burned");

State variables written after the call(s)

TLF-06 DEGREE CRYPTO - DCT-STAKING & DCT

432 pendingStaking[staker] = 0;

430 stakers[staker].amountStaked = 0;

431 stakers[staker].status = 3;

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts or applying

OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned functions to prevent reentrancy

attack.

Alleviation

[Degree Crypto] : Issue acknowledged. We won't make any changes for the current version.

TLF-06 DEGREE CRYPTO - DCT-STAKING & DCT

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

TLF-07 LACK OF REASONABLE BOUNDARY

Category Severity Location Status

Volatile

Code
Minor

TLpE6gFfYff5nSTRUZGEwA6KYeRVDKe86s/dct-staking.sol: 440,

447, 455
Acknowledged

Description

The variables rateTron , feeFirstStaking , price do not have reasonable boundaries, so they can be given arbitrarily

values after deploying.

Recommendation

We recommend adding reasonable upper and lower boundaries to all the configuration variables.

Alleviation

[Degree Crypto] : We use rateTron as a variable to store the last price of Tron (TRX). we will update the data manually,

we plan that every 4 hours we will update the rateTron value data. feeFirstStaking we use when we want to reimburse

the initial ticket fee for staking. Our default is 50000 IDR. price we use to replace the default miner price if during our

journey there is an adjustment to the miner price. Our default miner price is 1650000 IDR., 7770000 IDR., and 31080000

IDR.

TLF-07 DEGREE CRYPTO - DCT-STAKING & DCT

TLF-04 NO TRANSFER TO STAKED TOKEN

Category Severity Location Status

Logical

Issue
Informational

TLpE6gFfYff5nSTRUZGEwA6KYeRVDKe86s/dct-staking.sol: 38

1
Resolved

Description

The function importOldStaker imports the staking information but does not transfer the staked token to the contract

StakingDCT , which will potentially result in the staker not being able to retrieve the staked tokens due to insufficient

balance. We would like to confirm with the client if the current implementation aligns with the original project design.

Recommendation

We recommend reviewing the logic again and ensuring it is as intended.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the commit

3d365dd62838692938c174babff56f56995f3901.

TLF-04 DEGREE CRYPTO - DCT-STAKING & DCT

https://github.com/supportdct/smartcontract/commit/3d365dd62838692938c174babff56f56995f3901

TLF-05 REDUNDANT STATEMENTS

Category Severity Location Status

Volatile

Code
Informational

TLpE6gFfYff5nSTRUZGEwA6KYeRVDKe86s/dct-staking.sol: 56

~57
Resolved

Description

The linked statement does not affect the functionality of the codebase and appear to be either remnants of test code or older

functionality.

56 uint64 public constant stakingDuration = 90 days;

Recommendation

We recommend the redundant code is removed to better prepare the code for production environments.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the commit

3d365dd62838692938c174babff56f56995f3901.

TLF-05 DEGREE CRYPTO - DCT-STAKING & DCT

https://github.com/supportdct/smartcontract/commit/3d365dd62838692938c174babff56f56995f3901

OPTIMIZATIONS DEGREE CRYPTO - DCT-STAKING & DCT

ID Title Category Severity Status

TLY-01 Variables That Could Be Declared As Immutable Gas Optimization Optimization Acknowledged

OPTIMIZATIONS DEGREE CRYPTO - DCT-STAKING & DCT

TLY-01 VARIABLES THAT COULD BE DECLARED AS IMMUTABLE

Category Severity Location Status

Gas

Optimization
Optimization

TLpE6gFfYff5nSTRUZGEwA6KYeRVDKe86s/dct.sol: 5

86
Acknowledged

Description

The linked variables assigned in the constructor can be declared as immutable . Immutable state variables can be assigned

during contract creation but will remain constant throughout the lifetime of a deployed contract. A big advantage of immutable

variables is that reading them is significantly cheaper than reading from regular state variables since they will not be stored in

storage.

Recommendation

We recommend declaring these variables as immutable.

Alleviation

[Degree Crypto] : Issue acknowledged. We won't make any changes for the current version.

TLY-01 DEGREE CRYPTO - DCT-STAKING & DCT

FORMAL VERIFICATION DEGREE CRYPTO - DCT-STAKING & DCT

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal

verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected

behavior.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-transfer-revert-zero transfer Prevents Transfers to the Zero Address

erc20-transfer-succeed-normal transfer Succeeds on Admissible Non-self Transfers

erc20-transfer-succeed-self transfer Succeeds on Admissible Self Transfers

erc20-transfer-correct-amount transfer Transfers the Correct Amount in Non-self Transfers

erc20-transfer-correct-amount-self transfer Transfers the Correct Amount in Self Transfers

erc20-transfer-change-state transfer Has No Unexpected State Changes

erc20-transfer-exceed-balance transfer Fails if Requested Amount Exceeds Available Balance

erc20-transfer-false If transfer Returns false , the Contract State Is Not Changed

erc20-transfer-never-return-false transfer Never Returns false

erc20-transferfrom-revert-from-zero transferFrom Fails for Transfers From the Zero Address

FORMAL VERIFICATION DEGREE CRYPTO - DCT-STAKING & DCT

Property Name Title

erc20-transfer-recipient-overflow transfer Prevents Overflows in the Recipient's Balance

erc20-transferfrom-revert-to-zero transferFrom Fails for Transfers To the Zero Address

erc20-transferfrom-succeed-normal transferFrom Succeeds on Admissible Non-self Transfers

erc20-transferfrom-succeed-self transferFrom Succeeds on Admissible Self Transfers

erc20-transferfrom-correct-amount-self transferFrom Performs Self Transfers Correctly

erc20-transferfrom-correct-amount transferFrom Transfers the Correct Amount in Non-self Transfers

erc20-transferfrom-correct-allowance transferFrom Updated the Allowance Correctly

erc20-transferfrom-change-state transferFrom Has No Unexpected State Changes

erc20-transferfrom-fail-exceed-balance
transferFrom Fails if the Requested Amount Exceeds the Available

Balance

erc20-transferfrom-fail-exceed-allowance
transferFrom Fails if the Requested Amount Exceeds the Available

Allowance

erc20-transferfrom-false If transferFrom Returns false , the Contract's State Is Unchanged

erc20-totalsupply-succeed-always totalSupply Always Succeeds

erc20-transferfrom-never-return-false transferFrom Never Returns false

erc20-totalsupply-correct-value totalSupply Returns the Value of the Corresponding State Variable

erc20-totalsupply-change-state totalSupply Does Not Change the Contract's State

erc20-balanceof-succeed-always balanceOf Always Succeeds

erc20-balanceof-correct-value balanceOf Returns the Correct Value

erc20-balanceof-change-state balanceOf Does Not Change the Contract's State

erc20-transferfrom-fail-recipient-overflow transferFrom Prevents Overflows in the Recipient's Balance

erc20-allowance-succeed-always allowance Always Succeeds

erc20-allowance-correct-value allowance Returns Correct Value

erc20-allowance-change-state allowance Does Not Change the Contract's State

FORMAL VERIFICATION DEGREE CRYPTO - DCT-STAKING & DCT

Property Name Title

erc20-approve-revert-zero approve Prevents Approvals For the Zero Address

erc20-approve-succeed-normal approve Succeeds for Admissible Inputs

erc20-approve-correct-amount approve Updates the Approval Mapping Correctly

erc20-approve-change-state approve Has No Unexpected State Changes

erc20-approve-false If approve Returns false , the Contract's State Is Unchanged

erc20-approve-never-return-false approve Never Returns false

Verification Results

In the remainder of this section, we list all contracts where model checking of at least one property was not successful. There

are several reasons why this could happen:

Model checking reports a counterexample that violates the property. Depending on the counterexample,this occurs if

The specification of the property is too generic and does not accurately capture the intended behavior of

the smart contract. In that case, the counterexample does not indicate a problem in the underlying smart

contract. We report such instances as being "inapplicable".

The property is applicable to the smart contract. In that case, the counterexample showcases a problem

in the smart contract and a correspond finding is reported separately in the Findings section of this

report. In the following tables, we report such instances as "invalid". The distinction between spurious

and actual counterexamples is done manually by the auditors.

The model checking result is inconclusive. Such a result does not indicate a problem in the underlying smart

contract. An inconclusive result may occur if

The model checking engine fails to construct a proof. This can happen if the logical deductions

necessary are beyond the capabilities of the automated reasoning tool. It is a technical limitation of all

proof engines and cannot be avoided in general.

The model checking engine runs out of time or memory and did not produce a result. This can happen if

automatic abstraction techniques are ineffective or of the state space is too big.

Detailed Results For Contract ERC20
(projects/DegreeCrypto2/TLpE6gFfYff5nSTRUZGEwA6KYeRVDKe86s/dct.sol) In Commit
6104a5f4dd0ed9e11edb87a53194db742e793a0a

FORMAL VERIFICATION DEGREE CRYPTO - DCT-STAKING & DCT

Verification of ERC-20 Compliance

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-succeed-normal True

erc20-transfer-succeed-self True

erc20-transfer-correct-amount True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-false True

erc20-transfer-never-return-false True

erc20-transfer-recipient-overflow Inapplicable Inapplicable

FORMAL VERIFICATION DEGREE CRYPTO - DCT-STAKING & DCT

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-succeed-self True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-change-state True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

erc20-transferfrom-fail-recipient-overflow Inapplicable Inapplicable

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION DEGREE CRYPTO - DCT-STAKING & DCT

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

Detailed Results For Contract DegreeCryptoToken
(projects/DegreeCrypto2/TLpE6gFfYff5nSTRUZGEwA6KYeRVDKe86s/dct.sol) In Commit
6104a5f4dd0ed9e11edb87a53194db742e793a0a

FORMAL VERIFICATION DEGREE CRYPTO - DCT-STAKING & DCT

Verification of ERC-20 Compliance

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-succeed-normal True

erc20-transfer-succeed-self True

erc20-transfer-correct-amount True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-false True

erc20-transfer-never-return-false True

erc20-transfer-recipient-overflow Inapplicable Inapplicable

FORMAL VERIFICATION DEGREE CRYPTO - DCT-STAKING & DCT

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-succeed-self True

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-change-state True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

erc20-transferfrom-fail-recipient-overflow Inapplicable Inapplicable

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION DEGREE CRYPTO - DCT-STAKING & DCT

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-false True

erc20-approve-change-state True

erc20-approve-never-return-false True

FORMAL VERIFICATION DEGREE CRYPTO - DCT-STAKING & DCT

APPENDIX DEGREE CRYPTO - DCT-STAKING & DCT

Finding Categories

Categories Description

Gas Optimization
Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical

Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows,

incorrect operations etc.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on

how block.timestamp works.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

that may result in a vulnerability.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified using symbolic model checking. Each such

contract was compiled into a mathematical model which reflects all its possible behaviors with respect to the property. The

model takes into account the semantics of the Solidity instructions found in the contract. All verification results that we report

are based on that model.

Technical Description

The model also formalizes a simplified execution environment of the Ethereum blockchain and a verification harness that

performs the initialization of the contract and all possible interactions with the contract. Initially, the contract state is initialized

non-deterministically (i.e. by arbitrary values) and over-approximates the reachable state space of the contract throughout

any actual deployment on chain. All valid results thus carry over to the contract's behavior in arbitrary states after it has been

deployed.

Assumptions and Simplifications

The following assumptions and simplifications apply to our model:

APPENDIX DEGREE CRYPTO - DCT-STAKING & DCT

Gas consumption is not taken into account, i.e. we assume that executions do not terminate prematurely because

they run out of gas.

The contract's state variables are non-deterministically initialized before invocation of any function. That ignores

contract invariants and may lead to false positives. It is, however, a safe over-approximation.

The verification engine reasons about unbounded integers. Machine arithmetic is modeled using modular arithmetic

based on the bit-width of the underlying numeric Solidity type. This ensures that over- and underflow characteristics

are faithfully represented.

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for Property Specification

All properties are expressed in linear temporal logic (LTL). For that matter, we treat each invocation of and each return from a

public or an external function as a discrete time step. Our analysis reasons about the contract's state upon entering and upon

leaving public or external functions.

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates as atomic propositions. They are evaluated on the contract's state whenever a discrete time step

occurs:

started(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond .

willSucceed(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond

and considers only those executions that do not revert.

finished(f, [cond]) Indicates that execution returns from contract function f in a state satisfying formula

cond . Here, formula cond may refer to the contract's state variables and to the value they had upon entering the

function (using the old function).

reverted(f, [cond]) Indicates that execution of contract function f was interrupted by an exception in a

contract state satisfying formula cond .

The verification performed in this audit operates on a harness that non-deterministically invokes a function of the contract's

public or external interface. All formulas are analyzed w.r.t. the trace that corresponds to this function invocation.

Description of the Analyzed ERC-20 Properties

The specifications are designed such that they capture the desired and admissible behaviors of the ERC-20 functions

transfer , transferFrom , approve , allowance , balanceOf , and totalSupply . In the following, we list those

property specifications.

Properties related to function transfer

erc20-transfer-revert-zero

transfer Prevents Transfers to the Zero Address. Any call of the form transfer(recipient, amount) must fail if the

APPENDIX DEGREE CRYPTO - DCT-STAKING & DCT

recipient address is the zero address. Specification:

[](started(contract.transfer(to, value), to == address(0)) ==>

 <>(reverted(contract.transfer) || finished(contract.transfer(to, value), return

 == false)))

erc20-transfer-succeed-normal

transfer Succeeds on Admissible Non-self Transfers. All invocations of the form transfer(recipient, amount) must

succeed and return true if

the recipient address is not the zero address,

amount does not exceed the balance of address msg.sender ,

transferring amount to the recipient address does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transfer(to, value), to != address(0) && to != msg.sender &&

 value >= 0 && value <= _balances[msg.sender] && _balances[to] + value <

 0x100 &&

 _balances[to] >= 0 && _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true)))

erc20-transfer-succeed-self

transfer Succeeds on Admissible Self Transfers. All self-transfers, i.e. invocations of the form transfer(recipient,

amount) where the recipient address equals the address in msg.sender must succeed and return true if

the value in amount does not exceed the balance of msg.sender and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transfer(to, value), to != address(0) && to == msg.sender &&

 value >= 0 && value <= _balances[msg.sender] && _balances[msg.sender] >= 0 &&

 _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true)))

erc20-transfer-correct-amount

transfer Transfers the Correct Amount in Non-self Transfers. All non-reverting invocations of transfer(recipient,

amount) that return true must subtract the value in amount from the balance of msg.sender and add the same value to

the balance of the recipient address. Specification:

APPENDIX DEGREE CRYPTO - DCT-STAKING & DCT

[](willSucceed(contract.transfer(to, value), to != msg.sender && _balances[to] >= 0

 && value >= 0 && _balances[to] + value <

 0x100 &&

 _balances[msg.sender] >= 0 && _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true ==>

 _balances[msg.sender] == old(_balances[msg.sender]) - value && _balances[to]

 == old(_balances[to]) + value)))

erc20-transfer-correct-amount-self

transfer Transfers the Correct Amount in Self Transfers. All non-reverting invocations of transfer(recipient, amount)

that return true and where the recipient address equals msg.sender (i.e. self-transfers) must not change the balance

of address msg.sender . Specification:

[](willSucceed(contract.transfer(to, value), to == msg.sender && _balances[to] >= 0

 && _balances[to] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true ==> _balances[to] ==

 old(_balances[to]))))

erc20-transfer-change-state

transfer Has No Unexpected State Changes. All non-reverting invocations of transfer(recipient, amount) that return

true must only modify the balance entries of the msg.sender and the recipient addresses. Specification:

[](willSucceed(contract.transfer(to, value), p1 != msg.sender && p1 != to) ==>

 <>(finished(contract.transfer(to, value), return == true ==> (_totalSupply ==

 old(_totalSupply) && _allowances == old(_allowances) && _balances[p1] ==

 old(_balances[p1]) && other_state_variables ==

 old(other_state_variables)))))

erc20-transfer-exceed-balance

transfer Fails if Requested Amount Exceeds Available Balance. Any transfer of an amount of tokens that exceeds the

balance of msg.sender must fail. Specification:

[](started(contract.transfer(to, value), value > _balances[msg.sender] &&

 _balances[msg.sender] >= 0 && value <

 0x100) ==>

 <>(reverted(contract.transfer) || finished(contract.transfer(to, value), return

 == false)))

erc20-transfer-recipient-overflow

APPENDIX DEGREE CRYPTO - DCT-STAKING & DCT

transfer Prevents Overflows in the Recipient's Balance. Any invocation of transfer(recipient, amount) must fail if it

causes the balance of the recipient address to overflow. Specification:

[](started(contract.transfer(to, value), to != msg.sender && _balances[to] + value

 >= 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100 &&

 _balances[msg.sender] <

 0x100 && value >

 0 && value <= _balances[msg.sender]) ==> <>(reverted(contract.transfer) ||

 finished(contract.transfer(to, value), return == false) ||

 finished(contract.transfer(to, value), _balances[to] > old(_balances[to]) +

 value -

 0x100)))

erc20-transfer-false

If transfer Returns false , the Contract State Is Not Changed. If the transfer function in contract contract fails by

returning false , it must undo all state changes it incurred before returning to the caller. Specification:

[](willSucceed(contract.transfer(to, value)) ==> <>(finished(contract.transfer(to,

 value), return == false ==> (_balances == old(_balances) && _totalSupply ==

 old(_totalSupply) && _allowances == old(_allowances) &&

 other_state_variables == old(other_state_variables)))))

erc20-transfer-never-return-false

transfer Never Returns false . The transfer function must never return false to signal a failure. Specification:

[](!(finished(contract.transfer, return == false)))

Properties related to function transferFrom

erc20-transferfrom-revert-from-zero

transferFrom Fails for Transfers From the Zero Address. All calls of the form transferFrom(from, dest, amount) where

the from address is zero, must fail. Specification:

[](started(contract.transferFrom(from, to, value), from == address(0)) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

erc20-transferfrom-revert-to-zero

transferFrom Fails for Transfers To the Zero Address. All calls of the form transferFrom(from, dest, amount) where

the dest address is zero, must fail. Specification:

APPENDIX DEGREE CRYPTO - DCT-STAKING & DCT

[](started(contract.transferFrom(from, to, value), to == address(0)) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

erc20-transferfrom-succeed-normal

transferFrom Succeeds on Admissible Non-self Transfers. All invocations of transferFrom(from, dest, amount) must

succeed and return true if

the value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from ,

transferring a value of amount to the address in dest does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transferFrom(from, to, value), from != address(0) && to !=

 address(0) && from != to && value <= _balances[from] && value <=

 _allowances[from][msg.sender] && _balances[to] + value <

 0x100 && value >=

 0 && _balances[to] >= 0 && _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _allowances[from][msg.sender] >= 0 && _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true)))

erc20-transferfrom-succeed-self

transferFrom Succeeds on Admissible Self Transfers. All invocations of transferFrom(from, dest, amount) where the

dest address equals the from address (i.e. self-transfers) must succeed and return true if:

The value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from , and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transferFrom(from, to, value), from != address(0) && from == to

 && value <= _balances[from] && value <= _allowances[from][msg.sender] && value

 >= 0 && _balances[from] <

 0x100 &&

 _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true)))

erc20-transferfrom-correct-amount

APPENDIX DEGREE CRYPTO - DCT-STAKING & DCT

transferFrom Transfers the Correct Amount in Non-self Transfers. All invocations of transferFrom(from, dest,

amount) that succeed and that return true subtract the value in amount from the balance of address from and add the

same value to the balance of address dest . Specification:

[](willSucceed(contract.transferFrom(from, to, value), from != to && value >= 0 &&

 _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _balances[to] >= 0 && _balances[to] + value <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 _balances[from] == old(_balances[from]) - value && _balances[to] ==

 old(_balances[to] + value))))

erc20-transferfrom-correct-amount-self

transferFrom Performs Self Transfers Correctly. All non-reverting invocations of transferFrom(from, dest, amount)

that return true and where the address in from equals the address in dest (i.e. self-transfers) do not change the

balance entry of the from address (which equals dest). Specification:

[](willSucceed(contract.transferFrom(from, to, value), from == to && value >= 0 &&

 value < 0x100 &&

 _balances[from] >= 0 && _balances[from] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 _balances[from] == old(_balances[from]))))

erc20-transferfrom-correct-allowance

transferFrom Updated the Allowance Correctly. All non-reverting invocations of transferFrom(from, dest, amount)

that return true must decrease the allowance for address msg.sender over address from by the value in amount .

Specification:

[](willSucceed(contract.transferFrom(from, to, value), value >= 0 && value <

 0x100 &&

 _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100 &&

 _allowances[from][msg.sender] >= 0 && _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 ((_allowances[from][msg.sender] == old(_allowances[from][msg.sender]) -

 value) || (_allowances[from][msg.sender] ==

 old(_allowances[from][msg.sender]) && (from == msg.sender ||

 old(_allowances[from][msg.sender]) ==

 0xFF))))))

APPENDIX DEGREE CRYPTO - DCT-STAKING & DCT

erc20-transferfrom-change-state

transferFrom Has No Unexpected State Changes. All non-reverting invocations of transferFrom(from, dest, amount)

that return true may only modify the following state variables:

The balance entry for the address in dest ,

The balance entry for the address in from ,

The allowance for the address in msg.sender for the address in from . Specification:

[](willSucceed(contract.transferFrom(from, to, amount), p1 != from && p1 != to &&

 (p2 != from || p3 != msg.sender)) ==> <>(finished(contract.transferFrom(from,

 to, amount), return == true ==> (_totalSupply == old(_totalSupply) &&

 _balances[p1] == old(_balances[p1]) && _allowances[p2][p3] ==

 old(_allowances[p2][p3]) && other_state_variables ==

 old(other_state_variables)))))

erc20-transferfrom-fail-exceed-balance

transferFrom Fails if the Requested Amount Exceeds the Available Balance. Any call of the form transferFrom(from,

dest, amount) with a value for amount that exceeds the balance of address from must fail. Specification:

[](started(contract.transferFrom(from, to, value), value > _balances[from] &&

 _balances[from] >= 0 && _balances[from] <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

erc20-transferfrom-fail-exceed-allowance

transferFrom Fails if the Requested Amount Exceeds the Available Allowance. Any call of the form transferFrom(from,

dest, amount) with a value for amount that exceeds the allowance of address msg.sender must fail. Specification:

[](started(contract.transferFrom(from, to, value), msg.sender != from && value >

 _allowances[from][msg.sender] && _allowances[from][msg.sender] >= 0 && value <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom(from, to,

 value), return == false)))

erc20-transferfrom-fail-recipient-overflow

transferFrom Prevents Overflows in the Recipient's Balance. Any call of transferFrom(from, dest, amount) with a

value in amount whose transfer would cause an overflow of the balance of address dest must fail. Specification:

APPENDIX DEGREE CRYPTO - DCT-STAKING & DCT

[](started(contract.transferFrom(from, to, value), from != to && _balances[to] +

 value >= 0x100 &&

 value < 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom(from, to,

 value), return == false) || finished(contract.transferFrom(from, to,

 value), _balances[to] > old(_balances[to]) + value -

 0x100)))

erc20-transferfrom-false

If transferFrom Returns false , the Contract's State Is Unchanged. If transferFrom returns false to signal a failure,

it must undo all incurred state changes before returning to the caller. Specification:

[](willSucceed(contract.transferFrom(from, to, value)) ==>

 <>(finished(contract.transferFrom(from, to, value), return == false ==>

 (_balances == old(_balances) && _totalSupply == old(_totalSupply) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables)))))

erc20-transferfrom-never-return-false

transferFrom Never Returns false . The transferFrom function must never return false . Specification:

[](!(finished(contract.transferFrom, return == false)))

Properties related to function totalSupply

erc20-totalsupply-succeed-always

totalSupply Always Succeeds. The function totalSupply must always succeeds, assuming that its execution does not

run out of gas. Specification:

[](started(contract.totalSupply) ==> <>(finished(contract.totalSupply)))

erc20-totalsupply-correct-value

totalSupply Returns the Value of the Corresponding State Variable. The totalSupply function must return the value that

is held in the corresponding state variable of contract contract. Specification:

[](willSucceed(contract.totalSupply) ==> <>(finished(contract.totalSupply, return

 == _totalSupply)))

erc20-totalsupply-change-state

APPENDIX DEGREE CRYPTO - DCT-STAKING & DCT

totalSupply Does Not Change the Contract's State. The totalSupply function in contract contract must not change any

state variables. Specification:

[](willSucceed(contract.totalSupply) ==> <>(finished(contract.totalSupply,

 _totalSupply == old(_totalSupply) && _balances == old(_balances) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables))))

Properties related to function balanceOf

erc20-balanceof-succeed-always

balanceOf Always Succeeds. Function balanceOf must always succeed if it does not run out of gas. Specification:

[](started(contract.balanceOf) ==> <>(finished(contract.balanceOf)))

erc20-balanceof-correct-value

balanceOf Returns the Correct Value. Invocations of balanceOf(owner) must return the value that is held in the contract's

balance mapping for address owner . Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf(owner),

 return == _balances[owner])))

erc20-balanceof-change-state

balanceOf Does Not Change the Contract's State. Function balanceOf must not change any of the contract's state

variables. Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf(owner),

 _totalSupply == old(_totalSupply) && _balances == old(_balances) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables))))

Properties related to function allowance

erc20-allowance-succeed-always

allowance Always Succeeds. Function allowance must always succeed, assuming that its execution does not run out of

gas. Specification:

[](started(contract.allowance) ==> <>(finished(contract.allowance)))

erc20-allowance-correct-value

APPENDIX DEGREE CRYPTO - DCT-STAKING & DCT

allowance Returns Correct Value. Invocations of allowance(owner, spender) must return the allowance that address

spender has over tokens held by address owner . Specification:

[](willSucceed(contract.allowance(owner, spender)) ==>

 <>(finished(contract.allowance(owner, spender), return ==

 _allowances[owner][spender])))

erc20-allowance-change-state

allowance Does Not Change the Contract's State. Function allowance must not change any of the contract's state

variables. Specification:

[](willSucceed(contract.allowance(owner, spender)) ==>

 <>(finished(contract.allowance(owner, spender), _totalSupply == old(_totalSupply)

 && _balances == old(_balances) && _allowances == old(_allowances) &&

 other_state_variables == old(other_state_variables))))

Properties related to function approve

erc20-approve-revert-zero

approve Prevents Approvals For the Zero Address. All calls of the form approve(spender, amount) must fail if the

address in spender is the zero address. Specification:

[](started(contract.approve(spender, value), spender == address(0)) ==>

 <>(reverted(contract.approve) || finished(contract.approve(spender, value),

 return == false)))

erc20-approve-succeed-normal

approve Succeeds for Admissible Inputs. All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas. Specification:

[](started(contract.approve(spender, value), spender != address(0)) ==>

 <>(finished(contract.approve(spender, value), return == true)))

erc20-approve-correct-amount

approve Updates the Approval Mapping Correctly. All non-reverting calls of the form approve(spender, amount) that

return true must correctly update the allowance mapping according to the address msg.sender and the values of

spender and amount . Specification:

APPENDIX DEGREE CRYPTO - DCT-STAKING & DCT

[](willSucceed(contract.approve(spender, value), spender != address(0) && value >=

 0 && value <

 0x100) ==>

 <>(finished(contract.approve(spender, value), return == true ==>

 _allowances[msg.sender][spender] == value)))

erc20-approve-change-state

approve Has No Unexpected State Changes. All calls of the form approve(spender, amount) must only update the

allowance mapping according to the address msg.sender and the values of spender and amount and incur no other

state changes. Specification:

[](willSucceed(contract.approve(spender, value), spender != address(0) && (p1 !=

 msg.sender || p2 != spender)) ==> <>(finished(contract.approve(spender,

 value), return == true ==> _totalSupply == old(_totalSupply) && _balances

 == old(_balances) && _allowances[p1][p2] == old(_allowances[p1][p2]) &&

 other_state_variables == old(other_state_variables))))

erc20-approve-false

If approve Returns false , the Contract's State Is Unchanged. If function approve returns false to signal a failure, it

must undo all state changes that it incurred before returning to the caller. Specification:

[](willSucceed(contract.approve(spender, value)) ==>

 <>(finished(contract.approve(spender, value), return == false ==> (_balances ==

 old(_balances) && _totalSupply == old(_totalSupply) && _allowances ==

 old(_allowances) && other_state_variables == old(other_state_variables)))))

erc20-approve-never-return-false

approve Never Returns false . The function approve must never returns false . Specification:

[](!(finished(contract.approve, return == false)))

APPENDIX DEGREE CRYPTO - DCT-STAKING & DCT

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER DEGREE CRYPTO - DCT-STAKING & DCT

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER DEGREE CRYPTO - DCT-STAKING & DCT

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Degree Crypto - dct-staking & dct Security Assessment CertiK Assessed on Apr 18th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

